SPECIFICATION

FOR

0.6/1KV FLEXIBLE CABLE

Code: 0.6/1KV RE-PNCT 4X16mm²

Your Ref. No.

Our Ref. No.

Signed by

Takanobu Watanabe

Manager

Engineering Dept. I
Electric Wire & Cable Division

Proterial, Ltd.

Issue and revision record

Rev.	Issue	Item	Prepared	Reviewed	Approved
No	date		by	by	by
-	May. 2, 2018	First issue	X. Zamene K. Yamane		K.Fukuzato
			-		
					:
					i
			· 		:
				ļ	
			i i		
	į				
!					

1. Scope

This specification covers 0.6/1kV Flexible Cable, which is based on VDE0250-814, Japanese Electrical Facility Regulation and Manufacturer's Standard.

2. Construction and Materials

2.1 Conductor

Conductor shall be stranded flexible conductor consisting of tinned annealed copper wires. Suitable separator tape shall be applied over the conductor.

2.2 Insulation

insulation shall consist of ethylene propylene rubber compound.

Nominal thickness shall be shown in the attached table.

Ave. thick : not less than the nominal thickness

Min. thick : not less than 90%-0.1mm of the nominal thickness

2.3 Cabling of cores

Each insulated conductors shall be cabled together with a central tention member.

2.4 Sheath

Sheath shall consist of our original rubber compound.

Nominal thickness shall be shown in the attached table.

Ave. thick. : not less than 90% of the nominal thickness Min. thick. : not less than 85% of the nominal thickness

A straight line shall be marked on the surface of the sheath.

2.5 Reinforcement

Reinforcement consisting of cotton twines shall be applied in the middle of the sheath.

2.6 Dimension

The dimension of the cable shall be in accordance with the attached table.

3. Marking

Manufacturer's name and year of manufacture shall be marked by suitable methods.

4. Inspection

Inspection shall be made on the following items prior to shipment.

- (1) Construction and dimensions
- (2) Conductor resistance
- (3) Withstand voltage test
- (4) Insulation resistance

Table 1: Dimensions and electrical properties

(Code: 0.6/1KV RE-PNCT 4X16mm²)

	Item	Unit	Specified value	
	No. of conductor	-	4	
Conductor	Size	mm²	16	
Conductor	Construction	No./mm	7/18/0.4	
	Approx. diameter	mm	5.9	
Nominal thic	ckness of insulation	mm	1.2	
Nominal thic	ckness of reinforcement	mm	1.0	
Nominal thic	ckness of sheath	mm	2.9	
Approx. diar	neter of completed cable	mm	28.4	
Maximum di	ameter of completed cable	mm	29.9	
Approx. wei	ght of completed cable	kg/km	1220	
Max. conduc	ctor resistance(20℃)	Ω/km	1.24	
Withstand vo	oltage	V/min.	2500/5	
Min. insulati	on resistance(20℃)	MΩ·km	400	
Permissible	minimum bending radius	mm	290	
Permissible	maximum pulling tension *	kN	2.4	
Permissible	maximum compression force **	kN/m	2.9	

In any case, pulling tension and compression force must not exceed these value. For safety, regular pulling tension should be 1/3 of the permissible maximum value. It is necessary to determine the pulling tension considering the compression force.

** Compresstion force = Pulling tension / Bending radius

Fig.1 Cable cross section

Fig.2 Core identification